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1. Introduction

Since the last report: [1] considerable progress has been made

toward a solution of the dynamic stability of an eccentrically rein-

forced cylindrical shell.

In order to solve a specific problem,

the ends. of the eccentrically reinforced cylindrical shell are-

controlled to approach each other at a specific rate V = V(t).

This is similar to the first-known

dynamic stability investigation

of the column [2] in which Hoff used a constant V = Vo. - This

controlled end approach causes an axial loading whose dynamic

response is' investigated.

2. "Method of Solution

The dynamic equilibrium and- compatibility equations were derived

as equations (55) and (56) in- [1].-

In the sequel, these equations

will be called- field equations.- - The directions of z and w hawe been

reversed: from that used-in- [1].

Similarly, the moments- and .stiress

resultants comply now with-those  used by Timoshenko {3], or Velmir [4]

(except for N}'{y'and'Nyx in Volmir's book) and the thickness of the

monocoque shell is h, leaving t for time. ' The field equations are

easily modified- to include-initial-
w(l) the totai radial dispiacement

to initial- imperfections  and by'jﬁ

imperfections. - Denoting by

adial displacement due

the stress' function- wherr inftial

imperfections are considered, the field equations become:
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where the comma notation-is- used- for®partial-differentdiation, and where
the A's, S's, and m are-defined as-in [1](t +h)y ' p is the external
lateral pressure (assumed zero- in the sequel) and  the rotatory inertia

effects are included;"la‘is defined by

: -2 _2
Ia=§zﬁz*/°s l‘.‘gc_a‘?"ﬁ_S_z‘s */Ok‘[&e;é& (2)

The radial displacements- are  then chosen- like- those- in-reference [5],
‘where the  dynamic-stability of - the monocogque cylindrical shell is

investigated.

Wiy = fo Stnax s/n‘/B{; # GoSIN :«S/‘n?%

Wy = flff)slh«xﬂh/ﬁa l-g;ﬁ-‘)S/hzo(x.S/hjﬂ; @)
where _ 77112- _ _I_I-
X="T " a

R
m is the number of -half wave lengths, a, (ma = L) in- the axial: direction

and n is the number of full wave lengths, 2b, (ﬂZb =2ER] in: the circum-

ferential direction. - ''Spatial harmony" is  assumed between the imitial

]

imperfection-and the totai radiai displacement. The first-term of (3)

allows for a '"checkerboard" - or chess board,- and the second for a
"diamond"- buckling pattern.

The  above radial - displacement- assumption- does not’ exactly satisfy
neither simply-supported; nor clamped boundary conditions. It can be

shown, however, that clamped boundary conditions are satisfied on the

average over the circumference.



On substituting (3) into the second equation of (1), and inte-

grating, a stress function ﬁ (x,y,t) is obtained in the form:

é(xlilﬁ = ﬁ/; = /Vax é‘z - A‘/l;a Ez

where ﬁ/) corresponds to the homogeneous problem, Nox and ﬁo are due to

(5)

the axial loading. ¢h is given by:

¢h = A, S/}?WS/)?/}; +A, 5/53%\'5/"2/5; f235/}7°<x 5/'”%; * A COSOX
#As Cas 2By + )y cos 2ax casdfy + 7, cos ax *+ Ay cos “8y

+ Ag Cos ¥oxx Cos2f3y + Mip COS2ox oS %8y ©

The A'S are rather involved expressions that contain fl, fo’ 81> go, o, B,
A's, S's. The detailed listing will be forthcoming in the final report.
In the treatment of the monocoque shell in reference [5], ﬁoy is
assumed as the membrane hoop stress resultant due to hydrostatic pressure.
In the absence of the latter, no Poisson interaction is therefore possi-

ble. In contrast to such a simplification, ﬁox and I_\on are related by

the closure condition of the shell which can be stated as:

Byt - 5 9 60 8%

£

N
ﬁox is interpreted physically as the axial stress resultant at the
ends of the shell when averaged over the circumference.
The rate at which the ends of the cylindrical shell approach each

other is assumed in the form

V)= hett ®



which reduces to that of Hoff [2] for l:: 0.

The axial loading results from the mean end shortening e. given by

UR L 3
= O/D/w,xﬂ'x{, =/V('ddz' )

With equations (8) and (9), ﬁox can be shown to be:
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(10)
On using equations (7) and (10) in (5), the stress function is obtained
in terms of the known quantities.
The resulting stress function expression is then introduced into the
equilibrium equation of (1). Equilibrium is being satisfied in the mean

by using the Bubnov-Galerkin method, e.g.

LR

f / H simax S/nﬂy dxaéy

L UIR

dj o/ H sim'x S/'nzﬁy drdy

o

"
QS

(11)
Space limitation does not allow to list the expression for H in detail.
It can be easily appreciated that H would cover several pages and will

be given in the forthcoming final report.




Carrying out the Galerkin procedure leads to the following pair of

second-order coupled ordinary differential equations of the third degree:

§£=B/f ‘/‘Bzg, /'837[;;, f‘ggﬂ;,z -ﬁB 3
+&f /‘e{éf-B,
2
LU= Cg v +Cogl + G+ G hig 1G]
+Cr$/'e( e /_;,_ G
. Space does not allow a

The B's and C s are rather involved constants
The

(12)

detailed listing and reference is made to the forthcoming final report

B's and C's contain a, B, A's B's, fo’ g, M, R, L [ Y
On deleting the diamond pattern amplitude gl(t), settingd’ 0, taking

the B's and C's for the monocoque shell, letting R >+, m = 1, ¥ > 0 etc., the

1
above equations reduce to the single equation used by Hoff [2] for the column

except for a minor factor

The reduced equation becomes

2 (c (c) 3 (c)
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(14)
and where the superscript (c) implies column. If the factor 3/16 is replaced
by 1/4, Hoff's equation for the simply supported column is obtained. This

slight discrepancy has only a minor effect since 3/16 multiplies the imper-

(c) ()
1l 5

fection term of B . Its effect on B is multiplied by f£ 3, which becomes

1

significant only for large fl'

Once a solution of (12) has been accomplished, ﬁox can be calculated from
(10).

A computer program has been developed that will calculate the B's and C's
for a given reinforced shell and assumed m and n. It integrates the equation by
means of the Runge-Kutta method. The latter method was used in reference [5].
The method has been tested successfully on the constant coefficient reduced

linear systems of (12) which is amenable to a closed form solution. To

each pair m, n, there corresponds a Nox = Nox(t)'

For a particular mode (m,n) there exists a ﬁo which might be called

max
the critical dynamic buckling load for that mode. Which of these possible

modes (m,n) is the true mode, remains to be answered.

3. Related Work

In reference [5] m = n is assumed, and the criterion is adopted that, the
curve f=(f; +3,)//) = f(m'h'f), which departs earliest from the time-axis and
also is first to reach its peak, is the proper curve, so that m = n is deter-
mined. From the diagrams of reference [5], it appears, however, thatf departs
earlier and earlier with increasing n = m, so that this criterion remains
inconclusive.

In Agamirov and Volmir's paper [6], which is one of the earliest in the
field of dynamic buckling of shells, the dynamic stability of a monocoque shell
due to pressure loads (ramp) is investigated, using a similar approach. The

authors assume m = 1 from the very beginning and set f1= g They are faced with



8.
the same dilemma which they resolve by taking again the n that corresponds to
the curve f1 = fl(n,t) which departs earliest from the time axis.

4. Present Status and Future Work

Preliminary numerical solutions have been obtained for the stringer shell
labeled number 1 din Card's report [7] for a constant rate of end approach
Vo= 100 in/sec. These results are presently reviewed particularly with respect
to the modal numbers m,n. So far, no satisfactory criterion has been found in
choosing the proper m and n. A linear Donnell-type static equation has been
derived which leads to the following expression for the static axial buckling

load:

N o= =L O+ O py +OM +Opy *
X" 0[0%, +264, f-Azz]{ SRR AR AN

+2 £(6%5,-265, +522) +3g,i‘}

(15)
where
1_ ;2

_J]L = /3 = (ﬁf) )

JE_(b 2 TRYmM 2 (16)
9 = =(Z) =(’_)(’”)
M= A D, *5”1 ?
/A‘Z 2 (‘4& l)u *"LvZZZ -é?éi,é&z)
My = A D, + 4400, +2(S,S, 7"23/:)
M Z(AzzD/z *+An Dz, ‘25;1.5:.2.)
Ms = A Dx +Sz: /

If one chooses m = 2 n = 6 as reported in [7], the resulting buckling

"

loads for the internally and the externally stiffened cylinder agree quite
closely with Card's results. (see following Table)

Defining,

?ngEXI'.

an



it can be seen from the results in the table below that 2

considerable extent on the choice of m,n.

9‘

depends to a

' n
m n Nx int[lb/in]‘ N}& ext[lb/in]A 1}
EQ. (16) [CARD'S TEST | EQ.(16) CARD'S TESY EQ.(16)
1 5 756 1176 1.67 0.1579
1 6 800 1138 1.42 0.1316
®
2 6 849 800 1928 1875 2.27 0.2632
2 7 755 1610 2.14 0.2256

It is quite easy to determine a functiom 7-‘-2(‘1’} from equation (15), for a
fixed n. The maximum of 7 of all these n- parameter curves lies within
0.3 <& "4 0.4 and has an absolute maximum for n = 7 for Card's stringer shell.
From these considerations, it appears that any reliable theoretical prediction
of the static or dynamic critical buckling load would have to include a deter-
mination of m and n. It is recalled that the linear classical axial buckling
analysis leaves the mode m, n undetermined. Non-linear analysis will yield m,n

only if a variation of the parameters includes the half wave lengths, or other

parameters that are related to m,n.
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